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Laser Interferometer Space Antenna (LISA)

LISA is an upcoming space-based gravitational wave observatory. As ESA's third large-class
mission, LISA is planned to launch in 2035 with a mission duration of 4-5 years. The
detector setup will consist of three separate spacecraft in triangular formation 2.5 million
km apart, trailing the Earth in heliocentric orbit. The spacecraft will be interconnected by
lasers which can detect passing gravitational waves via time-delay interferometry.
Current ground-based instruments can detect the final moments of the merger (i.e.
the plunge) of stellar-sized objects like black-hole and neutron-star pairs. Space-based
instruments have the potential to peer into a range of much lower frequencies, accessing
a rich variety of sources, from supermassive black-holes in galactic centres to primordial
events (see Fig.). Among other sources, LISA will continuously observe the gravitational
waves emitted by inspiraling white-dwarf and neutron-star binaries within the Milky Way
(i.e. galactic binaries). The data acquisition can cover years for each system, with tens of
thousands of binaries monitored simultaneously.

These observations will enable the characterisation of the source systems and our under-
standing of their internal physics and state of matter. Detection is based on matched-
filtering, and shall require templates which remain accurate over thousands of orbits. This
suggests further refinement of dynamical models considering a variety of physical effects,
including spin and magnetic field interaction, tidal forces, and radiation-reaction effects.

The orbital dynamics of a purely gravitational binary system can be described by the post-
Newtonian Arnowitt-Deser-Misner (ADM) formalism. For a non-spinning point-mass
binary, the conservative Hamiltonian is:

H(r,p) = Ho(r,p) + & Hi(r,p) + & Holr,p) + ..., 2

where (r, p) are the binary separation and conjugate momentum seen from the centre-of-
mass frame, and the leading term #, is the Hamiltonian for Newtonian gravity. Any further
dissipative or non-gravitational interactions will show up as additional perturbations.
In general, the above Hamiltonian is not directly integrable, due to the presence of the
non-linear perturbation terms e2H,, e* H,, etc. In [1], we propose incorporating the
Lie series approach into the post-Newtonian context. This technique, described below,
provides a systematic framework for computing the orbital trajectories, capturing both
long-term (secular) and short-term dynamics, arbitrary eccentricities, and can be applied
to systems with a diverse range of perturbations.

The Lie series method

The approach involves finding a near- determining the generator of the transfor-
identity canonical coordinate transforma- mation, which parametriially encodes 7, as:

THE SPECTRUM OF GRAVITATIONAL WAVES

Ground-based
experiment

Observatories
& experiments

Frequency (Hz)

Cosmic
sources

Space-based observatory

Cesa

Cosmic microwave
background polarisation

Pulsar timing array

Gravitational waves

Gravitational waves (GWSs) are minuscule rip-
ples in spacetime produced from the accel-
eration of massive bodies. Predicted back
in the early days of General Relativity, they
were finally observed directly in 2015 by the
LIGO-VIRGO observatories.

As they travel, GWs deform spacetime by
alternately stretching and compressing it.
They can be polarised into two independent
‘modes’ hy(t) and hy(t).

The GWs emitted by a binary can be com-
puted from the quadrupole formula:
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where Q;;(t) is the mass quadrupole moment,
which is a function of the orbital trajectory.
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Thus, an analytical description of the trajec-
tory of the source is required for modelling
the gravitational waveform. This waveform
may conceivably depend on many parame-
ters of each body, such as masses, spins, mag-
netic and tidal properties, etc.

Post-Newtonian expansions

The Einstein field equations describe how
matter and energy influence the curvature of
spacetime, which in turn dictates the motion
of bodies. Despite an elegant formulation,
scarcely any exact solutions are known. Most
practical scenarios, such as merging black
holes or other compact systems, require the
use of numerical or approximation methods.
Among analytical methods, post-Newtonian
(PN) expansion schemes excel at describing
‘weak-field’ binary orbits, such as inspiraling
compact binaries. The approach involves ex-
panding the field equations perturbatively in
powers of e ~ v/c and solving for the cur-
vature (or rather the ‘spacetime metric’). By
doing so, one is left with equations of motion
for the bodies [3], occasionally in the form of
a Lagrangian or a Hamiltonian [8], resembling
those of Newtonian gravity with additional
relativistic corrections.

While post-Newtonian expansions have been
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progressively reaching higher orders, the de-
velopment of tools to analytically solve the
resulting equations remains behind, with ad-
hoc methods frequently restricted to secular
or quasi-circular approximations. The quasi-
Keplerian parametrisation (see [3]) has been
sucessfully determined up to 4PN order to
describe the orbits of non-spinning binaries.
However, a systematic extension of this ap-
proach to broader perturbative situations in-
cluding spinning or dissipative systems re-
mains a challenge.

tion 7,4, which maps the original Hamiltonian
‘H into a new Hamiltonian H* = T,(H). The
mapping is carefully chosen such that the
non-integrable terms in A are deferred to
high PN orders in #*, where they can be
formally neglected. At this point, the dy-
namics of H* can be easily extracted, giving
the secular orbital motion (r*,p*). Finally,
the process is reversed by applying 7, to
the secular coordinates, recovering the com-
plete dynamics of the system.
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(t), p(t) (1), p*(t)
The core challenge of the approach lies in
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Ty(z) = x+52{x,,g} +%{{x,g},g} +...,

where {, -} is the Poisson bracket. To find
the generator, we progressively solve equa-
tions of the form:

{96, Ho} = Fi(r,p)—H;, (=1,2,..., (3)
where Fy(r, p) are expressions derived from
the original Hamiltonian (2). The two un-
knowns g, and H; correspond to expansion
terms of g and H* in powers of €2 In [1],
we derive generator solutions for (3) for typ-
ical Hamiltonian terms in (2), which include
the local conservative ADM sector but also
other rotation-invariant perturbations. The
framework can be naturally extended to in-
clude non-conservative contributions such
as radiation-reaction terms (Aykroyd et al.,
in prep.), by using the variable-doubling for-
malism [5].

Magnetic interactions

Isolated white dwarfs and neutron stars can
exhibit external magnetic fields as strong as
10° and 10" Gauss, respectively. However,
whether such strongly magnetic degener-
ate stars are commonly found in binary sys-
tems remains unclear. Clarifying this sub-
tlety could provide crucial information on
the stability and formation mechanisms of
magnetic fields in these binaries.

Recent studies show that magnetic interac-
tions in galactic binaries create distinct sig-
natures in GWs that should be detectable
by LISA [4, 6]. Analyzing these signals can
reveal the magnetic properties of the sys-
tems, providing valuable data for population
models and insights into the magnetic fields
of degenerate stars.

Magnetic model

At leading order, the perturbing magnetic
interaction can be encoded by a non-
relativistic term:

o

Hp = m(m iy = 3(py )y - 7)) (4)

where the dipole moments p, , are assumed
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to be aligned with the spins of the stars. We
show [2] that given enough time, the mag-
netic interaction will drive the dipoles into
a configuration where they are anti-aligned
and perpendicular to the plane of the orbit.

Magnetic signature in GWs

In this configuration, we can compute the or-
bital motion and demonstrate [/] that mag-
netism will manifest as a frequency shift in
the GW mode harmonics proportional to
the magnetic interaction energy (4).
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