Decoding Optical Aberrations of Low-Resolution Instruments from PSFs:
Machine Learning and Zernike Polynomials Perspectives
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The accurate modeling of the Point Spread Function (PSF) is essential to understand the instrumental impact on images taken by optical systems. As a key indicator of an instrument’s optical quality, it reveals

the nature of its optical aberrations which are fundamental in evaluating image quality and systematics. Knowledge of this instrumental response plays a crucial role in applications such as image

deconvolution, where it enables the extraction of ideal images from observed data. While deconvolving images using the PSF, we improve the image clarity and allow the extraction of finer details, and such an

improvement on images global quality can advance our comprehension of physical phenomena.

In this study, our objective is to develop a machine learning model that can establish a connection between Zernike coefficients, which define the Wavefront Error (WFE) of optically deformed systems, and the

related PSF images. Resulting from the combination of neural networks and Zernike Polynomials, a brand-new model was created : ZerNet.

METHODS

RESULTS

Zernike Polynomials and WFE
When describing the Wavefront Error, Zernike Polynomials stand
as a powerful tool for representing a wide range of optical
aberrations, the lowest orders commonly acknowledged by

scientists are represented below.

Tip/Tilt Defocus Astigmatism Coma Trefoil
e ) O - -~ : a
-~ F Y
W o \
N J | -
Spherical  Secondary Astigmatism Quadrafoil  Secondary Coma Secondary Trefoil
m - ' A e A 2
\
| - A A Py av A
L4
/ \ \
A4 v v N L

Fig. 1 Visualization of Zernike Polynomials and optical aberrations

We may describe WFE, as a linear S
J ®(p,0) = ) @Z;(p,0)
j=1

combination of infinite order [1] :

However, in real-world situations, optical systems are tuned to
reduce higher-order aberrations, thereby limiting Noll's index j to
Norgers- This allows us to express the maximum values of each
radial order (in nanometers of optical path difference) as a finite
WFE budget for the Zemnike coefficients a; in our simulations :

B = [0,100,50,36,18,9]

PSF simulation
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The Python module poppy [2] allowed
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supported by three struts. Fig. 2 Designated pupil

Such a configuration is commonly used, particularly in astronomy,
while remaining basic allowing to be customized and adapted.
Unfortunately, one main issue stands out while using machine
learning algorithms : it requires extensive samples of data.

poppy stood out as the perfect tool for our study because it
includes a ZernikeWFE class implementation and parallelized PSF
calculations, which significantly reduces the typically large amount

of time needed to generate PSFs.
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Fig. 3 Aberrated PSFs simulated at 0.2 ym

As a result, it allows the computation of PSFs shown in the
previous plot, where optical aberrations mainly play a role in the
center part of the PSF.

Fraunhofer approximation
While poppy allows to compute PSFs from Fresnel and
Fraunhofer regions, choice has been made to take advantage of
Fraunhofer diffraction region which implies both far field and

paraxial hypothesis, very common in astronomy.
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Fig. 4 Diffraction regions after aperture / Credit : Figure from Stérkle [3]

After selecting a wavelengths range A between 0.2 ym and 1 ym,
we made use of encircled energy (EE) as estimator of our PSF
loss while cropping it to the region of interest we need.
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ZerNet Performance with 1um PSFs

The following figure features an upper plot comparing the
Zernike coefficient of the model with the reconstructed ZerNet
predictions, colors corresponding to different orders. The lower

plot shows the error over a range of real coefficients values.
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Fig. 7 Overview of Zemet's performance for coefficients estimation
The PSF reconstruction error is crucial to the propagation of
uncertainty in scientific applications, and it must be minimized to
limit systematics. In this instance, the error e resulting from
coefficients’ estimation until order j,,,, Was measured using the
Frobenius norm [4]:
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Fig. 5 PSFs and EEs for 1 between 0.2 um and 1 um

Fortunately, for any value of A, our chosen region of interest (ROI)

was big enough to contain more than 98% of the PSF.

ZerNet model

To link the images and their corresponding coefficients, we made
use of Zernet. This study's model is built on the Inception model's
premise and converts a 2D tensor as the input and a 1D tensor of

Noraers Values as the output.

Input_Image

?x32x32x1

?x32x32x1 ?x32x32x1

Conv2D

kernel (1x1x1x16)
bias (16)

Activation

Conv2D

kernel (1x1x1x16)
bias (16)

Activation

MaxPooling2D

> X3

Conv2D

kernel (3x3x1x32)
bias (32)

Activation

Conv2D

kernel (5x5x16x32)
bias (32)

Activation

Conv2D

kernel (3x3x16x32)
bias (32)

Activation

Dense

kernel (256x20)
bias (20)

Activation

Dense

kernel (98304x256)
bias (256)

Activation

Concatenate

Dropout
& Flatten depet

Fig. 6 ZerNet model architecture

REFERENCES

1. Niu, Kuo, and Chao Tian. “Zernike Polynomials and Their Applications.” Journal of Optics, vol. 24, no. 12, Dec. 2022, p. 123001. DOl.org (Crossref),

https://doi.org/10.1088/2040-8986/ac9e08.

2. Perrin, Marshall, et al. “POPPY: Physical Optics Propagation in PYthon.” Astrophysics Source Code Library, Feb. 2016, p. ascl:1602.018. NASA ADS,

https://ui.adsabs.harvard.edu/abs/2016ascl.soft02018P.

3. Storkle, Johannes. Dynamic Simulation and Control of Optical Systems. Shaker Verlag, 2018.
4. G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

ACKNOWLEDGEMENTS

This research effort is part of a project funded by the Agence Nationale de la Recherche (ANR) under the ANR-22-CE46-0009 grant, hosted by
the Centre de Physique des Particules de Marseille. We take this opportunity to express our gratitude to the French space agency (CNES) for co-
funding Lucas Sauniere's PhD.

~N A m s e e A s YYD T

| — Median Error
H Interquartile Range
Min-Max Range

Error Value (log scale)

2

Ay, ~
gy, =

o,
L‘D%

S ¢ S 2 2 3 5 S 5
Fer g FEEESFE
& & 5 CSELLL L

N N A o > > 2 & &
s s LS

Optical aberrations
Fig. 8 Error Analysis Between True and Reconstructed PSFs
The previous plot showcases, through ¢;, computation, the
ability of ZerNet to precisely assess optical system
aberrations. Even though min-max range appears wide and
variable, the continuous decrease of median error confirms

that using the predictions of several orders is constructive.
DISCUSSIONS

Our novel approach demonstrated that machine algorithms

can establish a relationship between PSF images and
corresponding optical aberrations without prior knowledge of
the WFE.

Key assumptions and Constraints :

* Approximation in Fraunhofer region

+ Specific WFE budget

» Low system’s resolving power

Findings :

Models failed to converge on even radial orders in radially
symmetrical optical system, highlighting the advantages of
radially asymmetric systems.

Future Improvements:

» Add noise to match real-case scenarios : Autoencoders &

Diffusion Denoising Probabilistic Models

Train on polychromatic PSFs

Perform element-wise analysis : WFE description per

optical element

Integrate physics into loss functions : Physics Integrated

Neural Networks

In the future, it might be applied to plenty of fields such as
astronomy, microscopy, or medical imaging where the

understanding of WFE might pose a substantial challenge.
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