

Contexte

dispersion)

▶ anisotrope

Objectifs

fréquence

Gaëtan Antoine^{1,2}, Romain Pascaud¹, Christophe Morlaas², Alexandre Chabory², Gautier Mazingue³, Vincent Laquerbe⁴ ¹ISAE-SUPAERO, ²ENAC, ³ANYWAVES, ⁴CNES

1. Introduction

taille des antennes et adresser plusieurs fréquences

▶ New space et nanosatellites : réduire l'encombrement ⇒ réduire la

▶ Impression 3D : permettre de nouveaux degrés de liberté à la con-

 $\overline{\varepsilon}(r,\omega)$

▶ anisotrope/inhomogène

 $\overline{\varepsilon} = \begin{bmatrix} \varepsilon_x & 0 & 0 \\ 0 & \varepsilon_y & 0 \\ 0 & 0 & \varepsilon_z \end{bmatrix} \qquad \overline{\varepsilon}(r) = \begin{bmatrix} \varepsilon_x(r) & 0 & 0 \\ 0 & \varepsilon_y(r) & 0 \\ 0 & 0 & \varepsilon_z(r) \end{bmatrix} \qquad \varepsilon(\omega)$

Appréhender les outils pour analyser les structures dispersives

▶ Concevoir des antennes utilisant l'impression 3D et la dispersion de

ception et utiliser de nouveaux concepts (inhomogénéité, anisotropie,

2. Etude de cellules unitaires 3D

Méthode de l'expansion de l'onde plane

► Analyse des modes propres d'une cellule unitaire cubique ⇒ diagramme de dispersion ⇒ extraction de la permittivité équivalente *ε_{r.eg.}*

 $\varepsilon_{r,eq} = \left(\frac{kc_0}{\omega}\right)^2$

► Cellule simple cubique et cubique faces centrées et leurs vues en coupe

Diagrammes de ε_{r,eq} en fonction de la fréquence et les 3 comportements associés

3. Structure à bande interdite électromagnétique (BIE) diélectrique 1D

Idée : permittivité équivalente $\varepsilon_{r,eq}$ homogène à la fréquence f_1 et coupe bande à la fréquence f_2

dispersif

Structure BIE diélectrique 1D selon \vec{x} avec $\varepsilon_{r1} > \varepsilon_{r2}$ + cellule unitaire en rouge Diagramme de $\varepsilon_{r,eq}$ avec $f_1 = 2.45$ GHz et $f_2 = 24$ GHz

Fonctionnement du patch circulaire à $f_1 = 2.45$ GHz et du DRA central à $f_2 = 24$ GHz

 Comparaison des performances des antennes avec un substrat plein et substrat BIE

6. Résultats et perspectives

- Etude de méthodes permettant d'extraire $\varepsilon_{r,eq}$ d'une cellule unitaire dispersive et comparaison pour des topologies de cellules différentes
- > Design d'une antenne bi-bande ISM 2.45 GHz/24 GHz par impression 3D et phénomène BIE qui améliore le diagramme de rayonnement à f2