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Disentangling and characterizing astrophysical GW signals with LISA
Modular global-fit pipeline for LISA data analysis
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Whatis LISA? Astrophysical sources
LISA is the acronym for Laser Interferometer
Space Antenna, a space-based gravitational wave /' K.

observatory. / _/ ._/

* Collaboration between ESA, its member states N e
ass-Ratio A
and NASA black holes Inspiral (EMRI) [HfEs7 (€2)

¢ Constellation of three spacecrafts, exchanging
laser beams, forming an equilateral triangle with
2.5 million km sides.

e Detect gravitational waves in the millihertz fre-
quency band.

LISA constellation in the solar system Massive Black. Hole Blnéfl'v (MBHB)
(Credit:  University of Florida / Simon Barke / CC BY-SA 4.0) (Reproduction / Credit: ESA)

(Why is LISA data analysis challenging?

‘ "Sangria" dataset
¢ LISA data is dominated by signal, making the noise level estima- =\ ¢ =« £ e | o
tion difficult. i : T
e Signals are long-lasting, and they overlap in time and frequency - l T e
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o All the Galactic binary signals cannot be resolved individually, ~ "..[=5~ ] e
and the unresolved ones form a confusion foreground. o —— -
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How to tackle the challenge? Our results
We designed a modular framework applied to anal- Matched Fifer SNR Matched Fiker SNR
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Conclusion
e We developed a global-fit pipeline for LISA data analysis.
Noise Block
e We applied it to the “Sangria” training dataset and obtained promising
results.

\ e Our pipeline is modular and can be adapted to future datasets.




