

Are Switchback boundaries observed by Parker Solar Probe closed?

Nina Bizien¹, T. Dudok de Wit^{1,2}, C. Froment¹, M. Velli³, S. D. Bale⁴, J. Kasper^{5,6}, P. Whittlesey⁴, R. Macdowall⁷, D. Larson⁴, A. Case⁶

1. LPC2E, CNRS/CNES/University of Orleans, Orléans, France 2.ISSI 3. U. of California 4.SSL 5.U. of Michigan 6.BWX Technologies 7.NASA Goddard 5. SAO

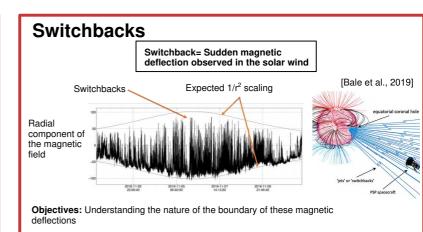
Coronagraph

NASA mission

Solar wind

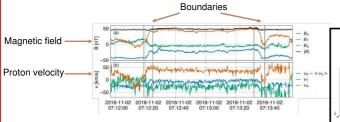
Constant outflow of highly ionised solar plasma: - protons and electrons - speed up to 700 km/s

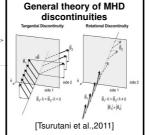
Parker Solar Probe: closest mission to the Sun

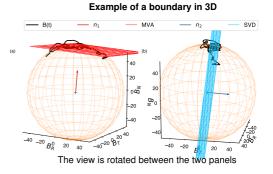

Launch: Aug. 2018 Max speed: 692 000 km/h \rightarrow Paris - Toulouse in 3.5s

Min Distance: 1/20 of Earth-Sun distance (150.10⁶ km)

Heatshield Temp: 1400°C


What's new? PSP detected omnipresent magnetic kinks in the solar wind, whose origin and propagation are still unexplained


Why is it interesting? May be linked to the anormal temperature of the solar coronal and the unexplained acceleration of the solar wind



What we find: They are mostly closed boundaries, with self-similar properties, which suggest a slow erosion as they propagate. This is in agreement with a solar origin

Switchback boundaries

Properties:

- Arc-polarized structures with a rotation always contained in a plane

- Alfvénic structures \rightarrow Constant magnitude |**B**|
- \rightarrow Deflection at the intersection of a plane and a sphere Superimposed fluctuations
 - SVD plane includes the origin
- MVA captures fluctuations, usually tangent to the sphere

Main parameter for the classification: $(\mathbf{B} \cdot \mathbf{n})/|\mathbf{B}|$ Small \rightarrow Tangential Discontinuities Large \rightarrow Rotational Discontinuities

 $\ensuremath{\textbf{Objective}}$: Identify the plane of the discontinuity and its normal $\ensuremath{\textbf{n}}$ to classify the boundary

Our methodology:

Apply two methods Minimum Variance Analysis (MVA) and Singular Value Decomposition (SVD) to estimate this plane in 3D and its normal

Results

- Visual identification of 250 boundaries
- All boundaries are $\mbox{arc-polarized structures}$ with constant |B| and included in a plane

We find that:

- \rightarrow most discontinuities are Tangential (71%)
- \rightarrow some are Rotational (3%)
- \rightarrow remaining are unclassified (26%)
- No clear dependance on the magnitude of the deflection \rightarrow self-similar

Nature of the boundary boils down to: Does the plane include the origin or not ? Discontinuities in the context of switchbacks

RD-like

$(B/|B|) \cdot n \neq 0$ $(B/|B|) \cdot n = 0$

Comparison with previous analyses:

[Larosa et al., 2021][Akhavan-Tafti et al, 2021]

- Mostly Rotational
- Use of $\ensuremath{\mathsf{MVA}}$ only which biased towards Rotational

Physical implications:

- Closed boundaries : no plasma flow across the boundary
- Slower erosion of the structures
- Compatible with a solar origin of the structures
- Self-similar : small structures are not large
- structures which evolved and were eroded to
- become smaller

Conclusion

- Switchbacks are arc-polarised structures whose rotation is always contained in a plane
- Mainly closed structures (TDs) Stark contrast with previous analyses (RDs) \rightarrow Use the MVA with great caution
- → stable structures which may survive until larger distances (observed at Earth's orbit)
- Switchback origin is likely to be rooted deep in the solar corona

My perspectives

Investigation of the solar origin of

switchbacks: Connecting in situ measurements of

switchbacks at PSP and eruptive phenomena observed in solar EUV images

