Diagnosis and fault-tolerant control for a multi-engine cluster of a reusable launcher with sensor and actuator faults

Renato MURATA^{1,2}

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIQUE FRANÇAISE

Égalité

PhD Advisors: Julien MARZAT¹, Hélène PIET-LAHANIER¹, Sandra BOUJNAH², François FARAGO²

¹DTIS, ONERA, Université Paris-Saclay, Palaiseau, Île-de-France, 91123, France ²CNES, Sous-Direction Techniques Systèmes de Transport Spatial, Paris, Île-de-France, 75612, France

Problem statement

Challenge: complete the mission even in the presence of faults.

The system considered here is the reusable launcher propulsive cluster. It is composed of:

- Multiple Liquid-Propellant Rocket Engines (LPRE)
- Thrust Vector Control (TVC)
- Propellant feeding system

Figure 1: Saturn V engine cluster. Image by INFINITY Science Center via collectspace

Solution: an active fault tolerant control structure.

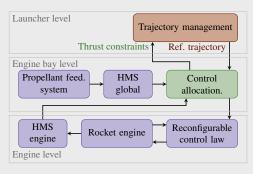


Figure 2: Possible functional architecture

Expected contribution

Work performed and next steps

Faults simulated: A leakage fault was simulated in four parts of the propellant feeding lines: at the main and secondary lines of the oxidizer feeding system.

Figure 3: Oxidizer feeding system scheme

Fault detection and localization method: State observers are used to estimate important variables of the system.

The **difference** between the measured and the estimated variables is used for **fault detection and localization**.

The performance of **three observers schemes** were compared: Luenberger observer, Unknown Input Observer (UIO) and High Gain Observer (HGO).

Table 1: Observer schemes performance

Observer scheme	Fault detection and localization performance	False alarm rate
HGO	92.44%	0%
Luenberger	80.33%	0.33%
UIO	72.00%	16.67%

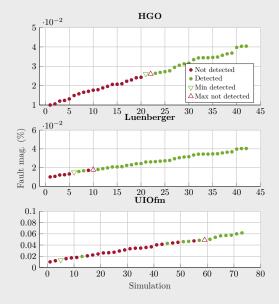


Figure 4: f_{s2} detection limit

Next steps:

- Development of a complete propulsive cluster model
- Apply the observer-based strategy for detection of other types of faults
- Study the system reconfiguration in case of faults