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o Wavelet transform of the gravity gradients time series at PR ARA well explained by surface water
scales 28-32 months : search for peaks in the period A hd sources.
September 2006 - April 2007 2004 2006 2008 2010 2012 2014 2016

oBump in the time series <« peak in the
wavelet-transformed coefficients

. . . The 2007 Atlantic signal is not well
Source from the core is expected to be to small to generate dynamic CMB topography, we focus on a mantle side source.

Source at the top of the CMB can not explain both geomagnetic jerk and gravimetric magnitude anomaly. Ieexapc::m:: I:Z s:rr;:z:ew::\:rt s::rrtce; 1;:::

These conclusions support the possibility of a deeper origin within the solid Earth.

. Source in the mantle above CMB: gravity signal could reflect deep mass
o Characteristics of Pv-pPv : fast (Langrand et al 2019), density redistributions from the Pv-pPv phase
contrast (100 kg/m®), occur in the D" region transition and generate a dynamic CMB
o African LLSVP : Pv-pPv phase transition deeper (7-14 K/m) topography notable. We next propose to
o Scenario proposed: Pv cold anomaly (T’) passing through the do the same study on the magnetic field.

phase transition and transform to pPv before other material at
temperature T creating a mass anomaly.
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