Effect of non-axisymmetric \mathbf{B}_0 on modes in cores

Felix Gerick¹ & Phil Livermore²

¹Royal Observatory of Belgium (felix.gerick@observatory.be); ²School of Earth and Environment, University of Leeds

Main points

- ullet Traditionally, background magnetic fields ${f B}_0$ are simple, e.g. spatial uniformity, axisymmetry, or perfect boundary conditions have been used for mathematical simplification
- \bullet Differences in torsional Alfvén modes between axisymmetric and non-axisymmetric \mathbf{B}_0 are compared
- The non-axisymmetry leads to larger scale mode filling the volume of the core

Motivation

- The magnetic field within the Earth's liquid outer core is inaccessible through direct downward projection of the magnetic field observed above Earth's surface.
- Previously, torsional Alfvén waves have been used to constrain the cylindrical radial component of the steady magnetic field deep in the core (Gillet et al., 2010).
 Recently, non-zonal columnar waves have been identified in satellite geomagnetic data that could extend the constrains given by torsional Alfvén waves (Gillet et al., 2022).
- To link the propagation of any of these waves to the steady large-scale magnetic field in the core, it is crucial to understand the influence of different magnetic field morphologies on the periods, velocities and magnetic field perturbations associated to the waves.

Axisymmetric B₀

- When using an axisymmetric \mathbf{B}_0 , the system is decoupled in the azimuthal degree m.
- We revisit some of the results presented by Luo and Jackson (2022).
- Dipolar field $\mathbf{B}_{0.1} \sim \nabla \times \nabla \times (5r 3r^3) Y_1^0 \mathbf{r}$
- Quadrupolar field $\mathbf{B}_{0,2} \sim \nabla \times \nabla \times f(r) Y_2^0 \mathbf{r}$
- Le = 10^{-4} , Lu = 2/Le
- Truncation: maximum SH degree L=200, radial degree N=(L-l)/2.

Figure 1: Gravest TM in a dipolar field ${\bf B}_{0,1}$. Q=49.3, $\lambda=-0.013530748466+0.666958322798i$

Figure 2: Gravest TM in a quadrupolar field $\mathbf{B}_{0,2}$. Q=156.7, $\lambda=-0.006595246178+1.033595994289i$

Linear mode calculation

The inviscid MHD equations are written as

$$\begin{split} &\frac{\partial \mathbf{u}}{\partial t} = -\frac{2}{Le} \mathbf{1}_z \times \mathbf{u} - \nabla p + \boldsymbol{\nabla} \times \mathbf{B} \times \mathbf{B}_0 + \boldsymbol{\nabla} \times \mathbf{B}_0 \times \mathbf{B}, \\ &\frac{\partial \mathbf{B}}{\partial t} = \boldsymbol{\nabla} \times \mathbf{u} \times \mathbf{B}_0 + \frac{1}{Lu} \boldsymbol{\nabla}^2 \mathbf{B}, \end{split}$$

with the Lehnert number Le = $B_0/(R\Omega\sqrt{\mu\rho})$ and Lundquist number Lu = $B_0R/(\eta\sqrt{\mu\rho})$.

The velocity and magnetic field are represented by a 3D poloidal-toroidal basis, satisfying the regularity at the origin and the appropriate boundary condition at the surface. Using a Galerkin projection of the bases \mathbf{u}_i and \mathbf{B}_i onto the momentum and induction equation, gives

$$\begin{split} \int \mathbf{u}_{i^{\star}} \left(\lambda \mathbf{u}_{j} + \frac{2}{\mathrm{L}} \mathbf{1}_{z} \times \mathbf{u}_{j} - \boldsymbol{\nabla} \times \mathbf{B}_{j} \times \mathbf{B}_{0} - \boldsymbol{\nabla} \times \mathbf{B}_{0} \times \mathbf{B}_{j} \right) \mathrm{d}V &= 0, \\ \int \mathbf{B}_{i^{\star}} \left(\lambda \mathbf{B}_{j} - \boldsymbol{\nabla} \times (\mathbf{u}_{j} \times \mathbf{B}_{0}) - \mathrm{L}\mathbf{u}^{-1} \boldsymbol{\nabla}^{2} \mathbf{B}_{j} \right) \mathrm{d}V &= 0, \end{split}$$

Solutions are the

- slightly modified inertial modes (IM),
- \bullet torsional Alfvén modes (TM),
- and Magneto-Coriolis modes (MCM).

Figure 3: Frequency-Quality factor spectrum of converged modes for $\mathbf{B}_{0,1}$ (L=50, top), $\mathbf{B}_{0,2}$ (L=50, middle), $\mathbf{B}_{0,3}$ (L=17, bottom).

Non-axisymmetric B₀

• $\mathbf{B}_{0,3} \sim \mathbf{\nabla} \times \mathbf{\nabla} \times (f_1(r)Y_1^0 + f_2(r)Y_1^1)\mathbf{r}$

Figure 4: Gravest TM in a non-axisymmetric field B_{0,3}. Q=153.5, $\lambda=-0.008268831753+1.269330959934i$

• Truncation is L = 100, N = (L - l)/2, $m \le l$

Convergence

Figure 5: Convergence of gravest TM in a non-axisymmetric field

 Figure 6: SH degree spectra for quadrupolar field ${\bf B}_{0,2},\,L=200$ (top) and non-axisymmetric field ${\bf B}_{0,3},\,L=100$ (bottom)

- \bullet Despite the need for all azimuthal orders m, gravest TM converges more quickly
- Smaller max. SH degree needed to achieve convergence

1D Torsional Alfvén mode equation

The diffusionless one dimensional TM equation reads

$$s^3H\frac{\partial^2\xi}{\partial t^2}=\frac{\partial}{\partial s}\left(Hs^3\frac{\partial\xi}{\partial s}\left\langle B_{0,s}^2\right\rangle\right),$$

with $\xi = u_{\phi}(s)/s$, H the column half height and

$$\langle B_{0,s}^2 \rangle = \frac{1}{4\pi s H \mu_0 \rho} \oint \int_{-H}^{H} B_{0,s}^2 s \, \mathrm{d}z \, \mathrm{d}\phi.$$

Luo and Jackson (2022) derive an approximate 1D set of equations including magnetic diffusion, that introduces a dependency on $\langle B_s B_\phi \rangle$.

Discussion & Outlook

- A non-axisymmetric magnetic field increases scale in spatial structure of TM.
- This is understood with $\langle B_s^2 \rangle$ dependency in the 1D TM equation.
- \bullet Effect of \mathbf{B}_0 on MCM more intricate and is part of ongoing investigations.
- Can a collection of modes provide constraints on the steady background field of the Earth?

References

N. Gillet, D. Jault, E. Canet, and A. Fournier. Nature, 465(7294):74-77, 2010.
N. Gillet, F. Gerick, D. Jault, T. Schwaiger, J. Abubert, and M. Istas. PNAS, 119(13):e2115255119, 202
J. Luo and A. Jackson. Proc. R. Soc. A, 478(2299):20010982, 2022.