EX
REPUBLIQUE
FRANCAISE

Liberté
Ealité

UNIVERSITH

w}..‘wscxzncfs

Yield stress fluids, like emulsions, cement and molten
metal, can be foamed: doing so they can loose weight
and gain insulating properties, while keeping their
elastoplastic properties, even if solidified.

In such a complex foam the yield stress can be tuned to
counteract drainage and oppose bubble deformations,
slowing or stopping the natural foam coarsening due to
the inter-bubble gas exchange.!"

My research focuses on the coarsening of wet foams,
and how it changes with yield stress.

Microgravity experiments: in the
International Space Station the foam
is produced in situ inside the sample
holdert?, which is equipped with
multiple optical instruments.
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In this setup we studied the
coarsening of simple foamst4l.
This research works here as the
reference in the comparison with
complex foams.
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Ground Experiments: the sample foam is injected in a cylindrical
cell, kept under a rotation w to prevent drainage. Like in microgravity
experiments, the setup is equipped to perform multiple optical
measurements in parallel:
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morphology films. fluctuations

Surface liquid fraction ¢

Autocorrelation function g,
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Normalised radius R/<R> Foam Xge (s) Delay time 1 (s)

Bubble size distribution Drainage prevented by The duration of bubble
converges to a scaling state rotation w until time T}, rearrangements evolves in time
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Materials:

* Emulsion: Silicone oil droplets inside a Gly/H,O
solution, index matched to ensure transparency.

» Surfactant: TTAB, both for droplets and bubbles.

Parameters:

+ Air bubble average radius: 30um < (R) < 600um
» Qil droplet Sauter radius: s, ~ 3um

+ Liquid volume fraction: 8% < ¢ < 50%

+ Qil volume fraction: 0%< ¢ < 80% ; O 3G |
& =25%,4p=70%

Our experimentsl! in simple coarsening foams reveal the presence of a
bubble population roaming inside the interstices between jammed bubbles.
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Bubbles start roaming when their size is smaller than a radius R; o R3;; their
unjammed state increases their lifetime and induces a hierarchical structure.

Normalised radius R/<R>

We find a scaling law between R, and the effective liquid channel radiust®l:

o

Ry~ 3(9)

3 s ¢ nondimensional factor

R¢/R3;
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K(¢) dimensionless flow permeability

(o) relative electrical conductivity

= . /| We find that roaming bubbles appear in
Equation for § = 2.2 foams regardless of the choice of gas,
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01 02 03 04 surfactant, and also in complex foams.
Liquid fraction ¢

Hierarchical porosity can enhance energy absorption in solid materials(’l:
controlling roaming bubbles could help to design solid foams properties.

Simulations show!®! that the combination of yield
stress g, and elastic modulus G can increase the
lifetime of isolated bubble loosing gas.
— In principle in a complex foam you can:

+ Slow down coarsening in the overall foam

+ Stabilise roaming bubbles in the elastic matrix

0.00 g
0.00 025 050 075 100

100 t

In experiments with small o,, we

observe instead a larger coarsening

el & rate than what we expect for a simple

® Simple foam é foam with the same liquid fraction and
® o | the same glycerol amount: this hints an

2 Complex foam additional mechanism, due to the oil

15 25 fraction ¢ but opposed to yield stress.
Liquid volume fraction ¢ (%)

Objectives:

 Highlight the nature of the unkown mechanism opposing yield stress

+ Determine the different coarsening regimes as a function of g, ¢

» Characterise the foam dynamic in the coarsening regimes
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® Simple foam with added Glycerol

Coarsening rate Q (um?/s)
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