Laboratoire
Signaux \&
IAS
Systèmes

Fraternité
Cnes
CENTRE NATIONAL
D'ÉTUDES SPATIALES

Multispectral and Hyperspectral Image Fusion with JWST/MIRI

Dan Pineau ${ }^{1,2}$, François Orieux ${ }^{1}$, Alain Abergel ${ }^{2}$
${ }^{1}$ Laboratoire des Signaux et Systèmes (L2S), CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France ${ }^{2}$ Institut d'Astrophysique Spatiale (IAS), CNRS, UMR 8617, Université Paris-Saclay, 91440 Bures-sur-Yvette, France

$$
\begin{aligned}
\boldsymbol{x}[i, j, l] & =\sum_{t=1}^{T} \boldsymbol{a}_{t}[i, j] \boldsymbol{s}_{t}[l] \\
\boldsymbol{x} & =\boldsymbol{T} \boldsymbol{a}
\end{aligned}
$$

- Data corrupted with additive white gaussian noises.
- The imager and spectrometer models are known [3] [4].
*simulated observations of the Orion Bar [1] [2]

Contribution

- Proposed procedure for the fast and exact calculation of Q^{-1} by demonstrating its diagonal block structure using [7] and applying a matrix inversion method from [3].
- Two main contributions :
- the fast calculation of the exact solution for ℓ_{2}, with $\hat{\boldsymbol{a}}=\boldsymbol{Q}^{-1} \boldsymbol{q}$,
- an accelerated procedure for the alternating minimization problem [3][4] for $\ell_{2,1}$.

Methods	NRMSE $\left(\times 10^{-3}\right)$	dSSIM $\left(\times 10^{-5}\right.$
Coaddition	133	1476
Exact solution of $\ell_{2}[5]$	27	241
Proposed $\ell_{2,1}$ approach	22	179

- Efficient deconvolution and denoising for all wavelength with inverse problem approaches, mainly thanks to correlations induced by the Linear Mixing Model
- Exact solution of $\ell_{2} 1000$ times faster* than minimization with gradient based algorithm [5] for a low noise case (SNR = 100 dB)
- Best spatial and spectral resolutions found with the proposed edge-preserving $\ell_{2,1}$ approach

*Size MS dataset : $9 \times 124 \times 248$, Size of HS dataset: $300 \times 31 \times 62$, Size of reconstruction: 300×124
$\times 248$.

Acknowledgments

This work is supported by the Agence Nationale de la Spatiales (CNES)
cnes

References

[^0]
[^0]: [1] Guilloteau, Claire, et al., "Simulated jwst data sets for multispectral and hyperspectral image fusion," The Astronomical Journal, vol. 160, no. 1, p. 282020.
 [2] Habart, Emilie et al., "High angular resolution near-ir view of the orion bar revealed by keck/nirc2," 2022.
 [3] Hadj-Youcef, Mohamed Elamine. "Spatio spectral reconstruction from low resolution multispectral data: application to the Mid-Infrared instrument of the James Webb Space Telescope". Diss. Université Paris-Saclay (ComUE), 2018. [4] Abi Rizk, Ralph. "Reconstruction hyperspectrale haute résolution par inversion de mesures spectroscopiques à [4] Abi Rizk, Ralph. "Reconstruction hyperspectrale haute résolution par inversion de mesures spectroscopiques à
 integrale de champ. Application au spectrométre infrarouge MIRI-MRS du télescope spatial James webb". Diss. integrale de champ. Applicatio
 Université Paris-Saclay, 2021.
 [5] Guilloteau, Claire, et al. "Hyperspectral and multispectral image fusion under spectrally varying spatial blurs[5] Guilloteau, Claire, et al. "Hyperspectral and multispectral image fusion under spectrally varying spatial blurs-
 Application to high dimensional infrared astronomical imaging." IEEE Transactions on Computational Imaging 6 Application to high
 (2020): 1362-1374.
 [6] Idier Jérôme
 [6] Idier, Jérôme. "Convex half-quadratic criteria and interacting auxiliary variables for image restoration." IEEE transactions on image processing 10.7 (2001): 1001-1009
 [7] Wei, Qi, Nicolas Dobigeon, and Jean-Yves Tourneret. "Fast fusion of multi-band images based on solving a Sylvester equation." IEEE Transactions on Image Processing 24.11 (2015): 4109-4121

