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- At subduction zones, cold lithospheric plates dive deep into the hotter Earth’s mantle.

Introduction

- Deep Focus Earthquakes are apparently related to their thermal structures.
- Seismic tomography provides a first-order information on slab morphology.
- Geoid and gravity gradients anomalies already evidenced over subduction zones.

Physical concept :

Main question :

AT - Ap - gravity anomaly Can gravity data from the GOCE mission be
used to infer slabs’ inner thermal structures ?

Focus of this study :

Estimate synthetic gravity data sensitivity to slabs inner thermal structures

Method : from deep (>200 km) slabs thermal structures
to synthetic gravity signals
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Results :synthetic gravity signals
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Left : Fig.7 Geoid N and vertical
gravity gradient T, synthetics
calculated for the slab 1 with Teer. We
focused on the relationship between
the geoid maximum amplitude, max
N, the central peak-to-peak
amplitude of Tz, ATz, and the slab
inner thermal structure (SITS). The
grey and red areas respectively
represent the slab location and
GOCE detection threshold.
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Right : Fig.8 N and T,
all viscosity profiles and both
morphologies 1 and 2, with T to
avoid any SITS variation effect and
focus on viscosity profile and slab’s
morphology influence on gravity
signals. Black line repl the

signals calculated for slab 1 with Teer,
! in order to illustrate variation effect
(compared to slab 1 with Toc).
Slabs 1 and 2 locations are
represented by the grey areas and
the dashed colored lines (resp.
purple and green for slabs 1 and 2).
If the slab's morphology and mantle
radial viscosity profile control the
signals shape at first-order, SITS
variations has a significative
influence on signals amplitudes.
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-Max N leads to T

Take hon

-Max N combined with AT, leads t0 T ,5,_s00
-z Sensitivity of gravity signals to slab’s morphology, mantle viscosity profile and SITS

-Gravimetric anomalies amplitude due to SITS modification > GOCE detection threshold

Synthetic case :

with a mobile trench and an overriding plate.”
eochemistry, Geophysics, Geosysiems 15.5
(2014): 1739-1765.

-Develop an inversion strategy based on a priori from seismic tomography

Natural case :

-Isolate the slab signal from the 200 first km in the total signal

UNIVERSITE oe
MONTPELLIER

ANR-21-CE49-0009

-Apply the inversion strategy to propose a range of possible SITS



