

Miniature space thruster

Pulsed vacuum arc discharge

Solid propellant

¥ 2.5

tu 2.0-1.5

Dische

t [µs] 2.2

Developed and manufactured by COMAT

High-speed imaging of titanium cathode spots in a Vacuum Arc Thruster

Etienne Michaux, Jérémie Julien, Stéphane Mazouffre

chamber

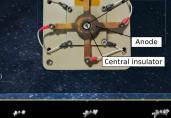
operation

.3487

13.2

I primary pump

2 turbomolecular pumps


■ 10⁻⁶ mbar while thruster

Vacuum Arc Thruster - PJP

Experimental arrangement

- Camera: Phantom TMX 7510 130L capacity vacuum
 - Sampling period 2.2 µs
 - Maximum resolution at 450k fps : 256 x 128
 - Stochastic phenomenon: arc dynamics changes from pulse to pulse Using a triggered iCCD leads to inaccuracies Importance of single shot measurements

8.8

Averaged Value

Vaporization and ionization of metallic

Plasma generation from the cathode:

in the opposite direction

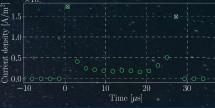
cathode spots

Plasma expansion leads to thrust generation

Cathode

11.0

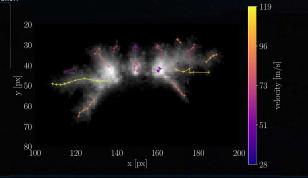
19000


15.4

Current density

13000

- Spots tracking using a modified PTV algorithm
 Each spot can sustain a limited j Explains the linear relation between ${\rm I}_{\rm d}$ and active spot surface
- Over the whole dataset: j = 4.3 ×10⁹ A/m²
- In accordance with the "Large spot" model



19.8

22.0

- First, to stress the point, the cathode spot is not moving: it only appears to move.
- Spots tracking using a modified PTV algorithm Random walk behavior Emergence of new spots during the discharge
- Accurate 2D tracking: spots trajectories and velocities
- Spots velocities ranging from 20 to 123 m/s
- Average velocity around 60 m/s, higher than in low current vacuum arcs
- No correlation between velocity and propagation direction

Active spot surface High degree of similarity between the evolution of the surface and I_d Spearman rank order coefficient of 0.95 in average Linear augmentation of the number of active spots with the augmentation of I_d Rich dynamics, but repeatable values from one pulse to the other Parameter

20 Time $[\mu s]$

...

					Surface [mm ²]	0.345	0.078
-10	0 10	10 20 Time [µs]	30	40	Max surface [mm ²]	1.124	0.230
					r _s	0.948	0.048
					Averaged values over the 150 films		
					10 20 A 11		
			Clu	ster	ing		
	ion of spots	clusters wi	th a dep	th-first s			
JFS) a	algorithm				(3)		
werac	ge cluster siz	e: 1.83 × 10	D^{-2} mm ²			(2) (7)~(11)
					4	d	h (12)
Лахіт	ium size read	ched aroun	id 5 µs: a	avg 0.3 r		6	(10) (13
		the beater		بما ما ام	5	9	
	at clusters at e to their inh					Functioning of a DF	Salgorithm
Du		iereni sen a	avoiding	waik m			
							24
		· ·		8	• %	الار الارومين الاقتصاد الروي	10
	· · ·			1	- T - 1		¥.
	t µs	4.4		Q	.8	17.6	

Conclusion and perspective

- New insights into cathode erosion dynamics
- Propellant use can be optimized by matching the cathode dimension and the discharge parameters
- Next experimental campaigns will be focused on seeking correlation between spot dynamics and instantaneous thrust

Motion tracking

- Andre Anders

 $\dot{40}$

- Discharge current responsible of velocity magnitude
- External electric field is not the main driver for the acceleration

KARE O comat