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Motivation for Hall-Effect Thruster (HET) Numerical Simulation with Machine Learning (ML)

Modeling plasma numerical simulations: Objective — Speed Up the resolution of Poisson equation. Electric Field computation
» Tracking instabilities for HET experimental design. Method — Coupling traditional methods and ML. » Need to solve Poisson equation to get the electric
» BUT expensive due to Electric Field computation. field for plasma modeling
3D Particle-In-Cell PIC simulation of HET over 15 million o

elements for unstructured mesh.

» Discretization of Poisson equation into a linear sys-
tem A.x = b for unstructured mesh.

» Coupling iterative solvers, e.g. General Minimal
RESidual (GMRES), or Conjugate Gradient (CG) and
using neural networks as preconditioners to get the
solution of linear systems faster.

\_ HETs : (a) PPS-1350 and (b) PPS-1350 severely eroded (Credits Safran) )
Graph Neural Network (GNN) ELISA Framework to solve Poisson equation
Spatial Graph Convolution [1] Training Procedure with ELISA:
» Supervised or Semi-supervised learning [2] for geometric problems A\ . Get the number of unknowns for the Linear system n,,
141 X R A% Tnitialize input_data array of neural network input_datafngg, 2]
— H'"(©) with (W, D), geometric values of the GNN. ‘\:5,‘ P e
» Output GNN: H'*! = g(g,(W, D) H'®, + g,(W, D) H'©,) - i ;
ELISA (Enhanced Linear Iterative Solver with
Artificial intelligence) Lo || A —Fpy| + HL Z(M —tiper)? & L2 residual norm + MSE
» Framework based on Pytorch Geometric 0 — ADAM(6, VoLo) . » Update Parameters with ADAM
and Pytorch for image or graph learning. u; +— GMRES(u;) & new input_datal[:, 0] for next timestep
_ B D et = — . A end for
R L A » Distributed Data Parallelism paradigm. - - - -
. | X for Semi-supervised learning to solve linear system coupled
GraphSage from Hamilton et al. and aggregation scheme for Graph Convolutional > Bay LSMI‘I Neura N‘LIW(‘)I s (BNNs) for with iterative solver (i.e. GMES)
Uncertainty Quantification.
_ Network (GCN) ) \_ )

Results for Graph Neural Network coupled with iterative solvers

» Capability to make training and inference on very large graphs. Final Requirements:

» Methodology to generalize the resolution of linear systems. » Reduce the computation time by a factor of 5 to 10.

» Extend the learning process for all linear systems with different geometries
(structured or unstructured mesh, 2D or 3D).

» Reach of tolerance level of 10~ for each linear system.
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» Solving Poisson equation for incompressible Navier-Stokes:
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» Solving Helmholtz equation for wave propagation problem:
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