

Égalité Fraternité

EUROPEAN CENTRE FOR RESEARCH AND ADVANCED TRAINING IN SCIENTIFIC COMPUTING

MULTI-GPUS IMPLEMENTATION WITH GRAPH NEURAL NETWORK TO SOLVE SPARSE LINEAR SYSTEMS FOR MASSIVE COMPUTATIONAL PROBLEMS

Gabriel VIGOT (CERFACS/CNES/SAFRAN Spacecraft Propulsion), Bénédicte Cuenot (CERFACS), Olivier Vermorel (CERFACS), Ulysse Weller (CNES), Benjamin Laurent (SAFRAN Spacecraft Propulsion)

Motivation for Hall-Effect Thruster (HET) Numerical Simulation with Machine Learning (ML)

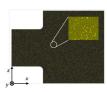
Modeling plasma numerical simulations:

- ▶ Tracking instabilities for HET experimental design.
- ▶ BUT expensive due to Electric Field computation.

HETs: (a) PPS-1350 and (b) PPS-1350 severely eroded (Credits Safran)

Objective → Speed Up the resolution of Poisson equation. Method → Coupling traditional methods and ML

3D Particle-In-Cell PIC simulation of HET over 15 million elements for unstructured mesh.



Electric Field computation

▶ Need to solve Poisson equation to get the electric field for plasma modeling

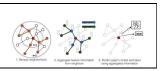
$$\Delta \Phi = -\frac{\rho}{\epsilon_0}$$

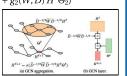
- ▶ Discretization of Poisson equation into a linear system $\mathbf{A}.\mathbf{x} = \mathbf{b}$ for unstructured mesh.
- ► Coupling iterative solvers, e.g. General Minimal $RES {\it idual}$ (GMRES), or Conjugate Gradient (CG) and using neural networks as preconditioners to get the solution of linear systems faster.

Graph Neural Network (GNN)

Spatial Graph Convolution [1]

- ▶ Supervised or Semi-supervised learning [2] for geometric problems $\rightarrow H^{l+1}(\Theta)$ with (W, D), geometric values of the GNN.
- ► Output GNN: $H^{l+1} = \sigma(g_1(W, D) H^l \Theta_1 + g_2(W, D) H^l \Theta_2)$





GraphSage from Hamilton et al. and aggregation scheme for Graph Convolutional Network (GCN)

ELISA Framework to solve Poisson equation

- Artificial intelligence) ► Framework based on Pytorch Geometric
- and Pytorch for image or graph learning. ▶ Distributed Data Parallelism paradigm.
- ► Bayesian Neural Networks (BNNs) for Uncertainty Quantification.

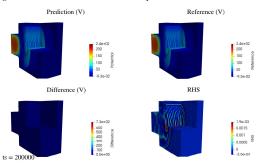
Training Procedure with ELISA:

Get the number of unknowns for the linear system n_{eq} Initialize input_data array of neural network input_data[$n_{eq}, 2$] $\begin{aligned} &\text{input_data}[:,0] = u_{i-1} \\ &\text{input_data}[:,1] = \mathbf{F} \mathbf{p}_i \\ &u_i \leftarrow u_{i-1} + f_{\theta}(u_{i-1},\mathbf{F} \mathbf{p}_i) \end{aligned}$ $\mathcal{L}_{\theta} \leftarrow ||\mathbf{A}.u_i - \mathbf{F}\mathbf{p}_i|| + \frac{1}{\pi}$ $\theta \leftarrow \text{ADAM}(\theta, \nabla_{\theta} \mathcal{L}_{\theta})$ \triangleright Update Parameters with ADAM ▷ new input_data[:,0] for next timestep

Semi-supervised learning to solve linear system coupled with iterative solver (i.e. GMES)

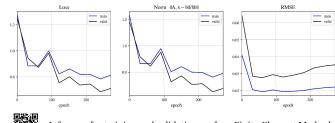
Results for Graph Neural Network coupled with iterative solvers

- ► Capability to make training and inference on very large graphs.
- ▶ Methodology to generalize the resolution of linear systems.



Final Requirements:

- ► Reduce the computation time by a factor of 5 to 10.
- ▶ Extend the learning process for all linear systems with different geometries (structured or unstructured mesh, 2D or 3D).
- ► Reach of tolerance level of 10⁻² for each linear system.

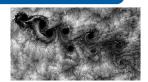


Inference for training and validation set for a Finite-Element Method Plasma Simulation

Prospects

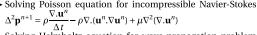
Inference for the training set for a massive plasma simulation problem

- ► Solving Poisson equation for incompressible Navier-Stokes: $\Delta^2 \mathbf{p}^{n+1} = \rho \frac{\nabla . \mathbf{u}^n}{\mathbf{v}^n} - \rho \nabla . (\mathbf{u}^n . \nabla \mathbf{u}^n) + \mu \nabla^2 (\nabla . \mathbf{u}^n)$
- $\mathbf{u}(r) = \rho(r)$



References

- [1] William L. Hamilton et al., Inductive Representation Learning on Large Graphs, 2018,
- [2] Sami Abu-El-Haija et al. MixHop: Higher-order graph convoutional architectures via sparsified neighborhood mixing.. ICML, pages 21-29, 2019



► Solving Helmholtz equation for wave propagation problem:

E-mail:

vigot@cerfacs.fr

