

Multiscale modelling of the Venus sulfur chemistry in the context of EnVision

Maxence Lefèvre¹, Emmanuel Marcq¹, Franck Lefèvre¹ ¹ LATMOS, SU/IPSL/CNRS/CNES, Paris, France

10-

100

101

10²

103

104

105

100

Pression (mb)

Venus

200

Terre

300

SO4 et H2O

400

Couche de nuages globales (45-70 km)

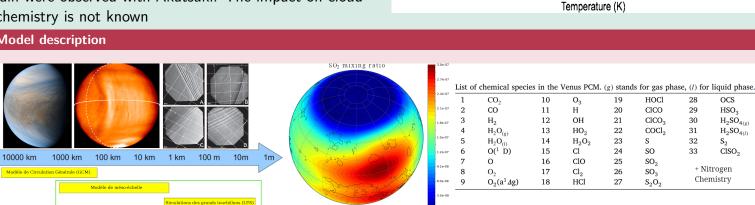
500

600

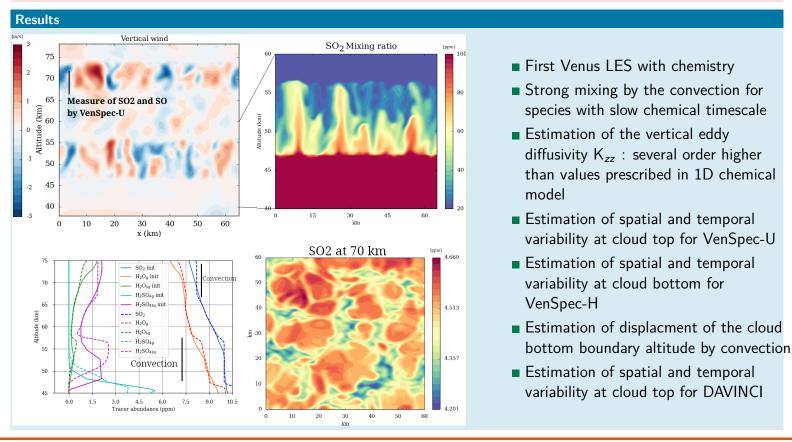
96.5% CO₂

150 ppm SO₂

800


3.5% N₂

700


Introduction

Venus is hosting a global sulfuric acid cloud layer between 45 and 70 km which has been investigated by the Venus Express and Akatsuki mission. In this cloud layer, strong turbulence occurs. A 10 km deep convection layer is held in which it remains unclear how this convective cloud layer and mountain waves mix momentum, heat, and chemical species. At cloud-top altitudes, large bowshape waves stationary above the main equatorial mountain were observed with Akatsuki. The impact on cloud chemistry is not known

Model description

To study the convective layer and the bow-shape waves, a Large Eddy Simulations (LES) model and a mesoscale model have been developed using the Weather-Research Forecast (WRF) non-hydrostatic dynamical core coupled with the IPSL Venus GCM physics package and the photochemistry model. The chemical network has 38 spieces as well as a simplified microphysics scheme. The LES model has a resolution of 400 m over 60 km, whereas the mesoscale model has a resolution of 40 km, both from the ground to 90 km.

