

Optimizing atmospheric turbulence predictions for optical links and astronomical observations by an instrumented drone

Mary-Joe Medlej*¹, Christophe Giordano¹, Aziz Ziad¹, Alohotsy Rafalimanana¹, Eric Aristidi¹

1: Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, 06304 Nice cedex 4, France Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS *Contact: mary-joe.medlej@oca.eu

Why prediction?

Anticipating atmospheric conditions in advance helps in both the astronomy and optical telecommunication communities:

Astronomical observation

Flexible scheduling:

- →Prioritize observations according to optical conditions.
- →Maximize scientific output quality.
- →Efficient resource management.

ELT: >200k €/night

Optical telecommunication

→Identify optimal time windows for optical laser links operation.

Smart scheduling:

→Facilitates optimal selection of optical ground stations to receive information, enabling site switching in adverse conditions.

How to predict?

We use the Weather Research and Forecasting (WRF) model, developed at NCAR (Boulder, USA), combined with an optical turbulence (OT) model.

Weather Parameters (WP)

OT parameter

WRF Model

Pressure **Temperature** Relative humidity Model Wind speed Wind direction

 $\binom{2}{n}$ profile

Two different turbulence models are used:

- Empirical model (radio sounding balloons)
- Tatarskii model

Prediction optimization

- Models alone are not enough. Optimization methods have been developed, showing improvements in free atmosphere but limited impact in the ground layer (GL):
 - Statistical learning (Ref1)
 - New Outer Scale method for Tatarskii's model (Ref2)
 - Optimizing WRF physico-dynamics configuration (Ref2)
- GL prediction optimization by an instrumented drone:

Equipement: weather probes

Scans the GL (450m), иp and down above a fixed point

The collected data are injected into WRF to improve the WP predictions and then OT forecasting

2023-11-15 10:00:00

Results

WRF_0_Injections WRF_1_Injection WRF 0 Injections 400 돌 ³⁰⁰ 200 200 100 100

Profiles of potential temperature and wind speed for two different dates, at the Calern site, part of the observatoire de la Côte d'Azur. WRF_0_injection, WRF_1_injections, and WRF_3_injections present the predicted profiles with 0, 1, and 3 injections, respectively.

Conclusion:

- → With drone data injections, the prediction accuracy improves.
- → As the number of injections increases, the prediction becomes significantly more accurate.

Perspective:

Future improvements will focus on increasing drone injections by: → Implementing an automated drone station for higher daily injection frequency.

→ Incorporating better vertically resolved data in WRF for injections at more pressure levels.

References: (1) Giordano et al. 2021, MNRAS, 10.1093/mnras/staa3709 (2) Rafalimanana et al. 2022, PASP, 10.1088/1538-3873/ac6536

- (3) Ziad et al. 2018, SPIE, 10.1117/12.2313386 (4) Medlej et al. 2024, SPIE, 10.1117/12.3018254