\%igirc

Dissipation mechanisms of the inner core's translational oscillations

Paolo Personnettaz ${ }^{\text {a,b.*, }}$, David Cébron ${ }^{\text {b }}$, Nathanaël Schaeffer ${ }^{\text {b }}$, Mioara Mandea ${ }^{\text {a }}$
CNES - Centre National d'Etudes Spatiales, Paris, France
Université Grenoble Alpes, CNRS, ISTerre, Grenoble, France

Abstract

Probing of the Earth's interior is limited to a few measurements. For example, a more accurate estimate of the density difference between the inner and outer core could better constrain the driving force of the geodynamo. Gravimetric measurements of the translational oscillations of the inner core could help in this respect, but these oscillations still elude detection. Translational oscillations, also known as Slichter modes ${ }^{1,2}$, are the result of extreme events, such as massive earthquakes or asteroid impacts, which can slightly displace the inner core. The centre of mass of the inner core would later swing around the equilibrium position as a damped oscillator. Previous linear models could only predict the oscillation period ${ }^{3,4}$, bounding the frequency range of interest for observations. Here, for the first time, we study the viscous and magnetic dissipation mechanisms through non-linear simulations of the outer core fluid response. We take full advantage of the spherical shell geometry and use the fast pseudo-spectral code XSHELLS ${ }^{5}$ to solve the problem numerically. Since the study of realistic Earth values is out of reach, we use a systematic exploration of the parameter space to derive scaling laws that can be used to extrapolate to Earth conditions.

Translational oscillations ${ }^{1,2}$

- Strong Earthquakes - Impact events The inner core center of can displace mass evolution $r(t)$ follows the inner core. Newton's $2^{\text {nd }}$ law ${ }^{3,4}$: $m_{1 \mathrm{c}} \frac{\mathrm{~d}^{2} r}{\mathrm{~d} t^{2}}=\sum_{j} F_{j}$ Modes splitting: - Coriolis - centrifugal - 1 polar $(l=1, m=0)$ - gravity - added mass - 2 equatorial $(I=1, m=-1,+1)$ - viscous - magnetic
Kno

Physical model implemented in XSHELLS5

Viscous dissipation

Magnetic dissipation of the polar mode
Forced polar oscillation: $u_{z}=\varepsilon \cos (\omega t)$

Influence of the inner radius

References:

[1] L.B. Slichter, "The fundamental free mode of the Earth's inner core", PNAS 1961
[2] S. Rosat, "A review of the Slichter modes: an observational challenge", 2012
[3] F.H. Busse, "On the free oscillation of the Earth's inner core" J GR 1974
[4] M. Rieutord, "Slichter modes of the Earth revisited." PEPI 2002 JGR, 1974
[5] N. Schaeffer, "Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations," G3, 2013 [6] M.L. Smith, "Translational inner core oscillations of a rotating, slightly elliptical Earth." JGR, 1976 [7] B.A. Buffett, and D.E G. Ger 1995 [8] A. Coyette, and T. Van Hoolst, "Slichter modes of large icy satellites." Icarus, 2014

