

1

•

Measuring dynamical properties of atmospheric convection using C²OMODO a tandem of microwave radiometers

Thomas Lefebvre^{1,2,4*}, Hélène Brogniez^{1,3}, Laura Hermozo² and Frédéric Chevallier³ : LATMOS/IPSL/UVSQ - 2 : CNES - 3 : LSCE/IPSL - 4: Airbus Defense and Space

Scientific context: Deep Convection

Strong impacts on : Water & Energy Cycles

o High spatial and temporal sampling

Lack of observations of convective updrafts

o In-situ measurement difficulties over oceans.

o Limited representation in meteo/climate models

Issues around deep convection :

Extreme cloud systems, occurs in Intertropical zone air, aerosols & water updrafts up to the tropopause

Space mission : C²OMODO 2

C²OMODO (Convective Core Observations through MicrOwave Derivatives in the trOpics) :

- Contribution to Atmosphere Observing System (AOS) program (NASA-led with CSA, JAXA, CNES)
- · Observation of clouds and storms dynamics
- Twin multispectral passive microwave radiometers
- · Measurement expressed in brightness temperature (Tbs)
- Tbs related to ice scattering attenuation
- $\frac{dTbs}{dt}$ related to growth of convection [1][2]

3

General Description	Frequency [GHz]	IFOV [km]
Orbits Inclined ± 55° latitudes Launch : [2028 – 2030] Mean altitude : 427 km Swath : > 750 km	183.31	5
	325.15	3
	89	10
Table.1 : Description of C ² OMODO and instrumental configuration used. IFOV at nadir.		

Contact*: thomas.lefebvre@latmos.ipsl.fr

Numerical tools

- MESO-NH [5] (Cloud Resolving Model) : • Laboratoire d'Aérologie et Météo-France
- Non-hydrostatic (Resolved convection)
- Hector simulation [6]:
- 6h ; 256*200 km² ; up to 30km • $\Delta x = 1$ km ; $\Delta z = 200$ m ; $\Delta t = 30s$

RTTOV.13 [7] (Radiative Transfer Model) :

- · Simulation of satellite measurements
- No spatial observation geometry yet
- Default particle size/shape distribution [8] To be explored in another study

and final time measure

MESO-NH

W_{air} : In-cloud vertical wind velocity ; Vc : Terminal velocities ; In red : Cloud classes

4 Machine learning method

Method : GBDT - LightGBM [9] (Article in preparation) :

- Convective cell structure (Based on [4]) :
 - Single-radiometer : Cloud structure (Fig.4)
 - o Tandem-based : Ice variation phases
- High performance retrieval of *IWP* and *dIWP*

dle line: map of the real and retrieved IWP (Ice Water Path $[kg,m^{-2}]$: total atmospheric ice content). tom line : Diagram of dispersion of IWP (left) and dIWP/dt (right). Middle lin

- [1] : Brogniez et al, (2022), Front Remote Sens. [2] : Auguste F and Chaboureau J-P (2022), Front. Rev
- [3] : Houze, R. A. Jr (2014). Cloud Dynamics
- [4] : Marinescu et al (2016), J. Geophys. Res. Atmos
- [5] : Lac et al (2018), Geosci. Model Dev.
- [6] : Dauhut T and Chaboureau J-P (2015), Atmos. Sci. Let.
- [7] : Saunders, R., et al (2018), Geosci. Model Dev. [8] : Geer et al (2021). Geosci. Model Dev.
- [9] : Ke, G., et al (2017), Neural Informati
- Processing System [10] : Rodgers (2000), World Scientific Publishing.

5 Variational approach method (1D-VAR)

Method :

- Iterative principle Based on Bayesian theory [5] · Retrieval of ice water content
- Retrieval of vertical wind velocities profile, W(z) Gaussian model based (Fig.5)
 - Advection scheme similar to MESO-NH (Fig.6)

First results :

- Fig.7: Spatial coherence of dynamical properties
- Fig.8: Consistent ice content and vertical velocity profile
- Fig.9: W_{max} and H_{max} well estimated

Conclusions and perspectives

5

Among other possible products, C²OMODO enable the retrieval of:

- Using Machine Learning : Cells structure and Integrated geophysical variables
- Using 1D-VAR : Profile of : Ice Water Content & Vertical wind velocities

PHD perspectives : Investigation of 1D-VAR biases, Application on other cloud structure, Sensitivity analysis to tandem parameters (Tandem simulator), Publication on the 1D-VAR.

