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Geochemical data from terrestrial and martian rocks The total amount of water measured in primitive OCs is almost oale e
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Fig.3 - Water abundance in primitive meteorites as function of their expected Typically ~6-10mg of OCs were crushed into powder, weighted in tin capsules and degassed under vacuum at 120°C
heliocentric distance in the protoplanetary disk. or in a degassing canister to remove absorbed atmospheric water followin . After dehydration, the degassin
for 48h d ter t bsorbed at h ter foll 12]. After dehydration, the d

canister was opened in a N2-flushed glove box and samples were transferred into a custom sealed, auto-sampler pre-
flushed with He. Samples experienced pyrolysis at 1450°C on a EA glassy carbon reaction tube using the Thermo
Scientific EA IsoLink deltaV IRMS System at CRPG laboratory (Nancy, France). After chromatographic separation, the
extracted Hz was introduced into the mass spectrometer and its H abundance and 6D value were characterized.

However, reconstructing the initial amount of water in OCs is
not straightforward because most of these meteorites have
been affected by intense thermal metamorphism on the ir
parent body(-ies) (up to 900 °C) that strongly modified their
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