

CONTEXT

LER

PREDICTIVE CONTROL

Adaptive Optics for LEO-to-Ground Optical Communication Links

P. Robles^{1,3}, C. Petit¹, B. Benammar², B. Neichel³

¹ONERA, DOTA, Paris Saclay University, 92320 Châtillon, France ² Centre National d'Études Spatiales, 31400 Toulouse, France ³Aix-Marseille Univ., CNRS, CNES, LAM, 13013 Marseille, France

OPTICAL LEO-TO-GROUND LINKS

- Optical communications: higher data rates + avoid RF saturation + difficult to intercept + mass/volume/power savings
- Low-Earth-Orbit (LEO) to ground links: direct to Earth links for downloading high volume of payload data

THE NEED FOR ADAPTIVE OPTICS

- Adaptive Optics (AO) corrects phase distortions on optical signal due to atmospheric turbulence
- AO allows coupling into single mode fiber: optical signal amplification, use of available optical fiber communication technologies

TEMPORAL ERROR

Error in correction due to delay between phase measurement and correction. Bigger with faster turbulence evolution.

Predictive controller accounts for evolution during delay. In LEO-toground case, information of apparent wind speed **known from orbit**.

ADAPTIVE OPTICS SYSTEM

CHALLENGES

LEO satellites move across the sky:

- Need for tracking
 - Observation at different elevations, including low elevations down to 10°:
 Changing turbulence conditions
- Strong turbulence at low elevations
- Relative movement of the satellite results in strong apparent wind: • Increase in the turbulence dynamics
 - Increase in AO temporal error

MODELLING

- · Modal description of turbulence using Zernike polynomials
- Vector AutoRegressive (VAR) process for turbulence evolution

$$oldsymbol{\phi}_{k+1}^{ ext{tur}} = oldsymbol{A}_1 oldsymbol{\phi}_k^{ ext{tur}} + oldsymbol{A}_2 oldsymbol{\phi}_{k-1}^{ ext{tur}} + oldsymbol{
u}_k$$

- Solution to VAR using temporal covariances, equivalent to spatial covariances (analytical formulas available)
- Result: model represents frozen flow with known wind

IDENTIFICATION

- Analytical expressions for spatial correlation between Zernike polynomials available
- C_n^2 profile: needs to be estimated (altitudes and strength)
- · Wind profile: dominated by apparent wind, thus known from orbit

SIMULATION OF THE LISA AO BENCH AT ONERA

-5.0 -1.5 -10 -2.5 -2.0 -1.5 Couplet flux [4/f]

Predictive controller (SA-LQG) vs. classical integrator (OMGI).

Gain of several dB thanks to reduction of fadings and better average coupling.

NORMALIZED COUPLED FLUX TIME SERIES

Predictive controller (SA-LQG) vs. classical integrator (OMGI). Use of two different loop frequencies.

- Reducing temporal error brings gains in fading reduction (even with fitting error)
- · Fadings come mostly from low-order modes: not in fitting, but in temporal error
- Can relax system design to a lower frequency with same performance

PUBLICATIONS

P. Robles, C. Petit, J.-M. Conan, B. Benammar, and B. Neichel, "Predictive adaptive optics for satellite tracking applications: optical communications and satellite observation," in *Adaptive Optics Systems VIII*, 2022, doi: 10.1117/12.2630217

- PERSPECTIVES
- •Impact of Shack-Hartmann WFS: aliasing, number of modes to be estimated? •Identification of the turbulence profile
- •Towards sky \rightarrow test on laboratory:
 - •PICOLO (turbulence emulation bench) + LISA (AO system)