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Context
Fluid outer core motions are known from the
geomagnetic field changes. As these motions
involve mass variations, they might also be
observed through gravity field variations.

Difficulties ~N
Gravity field variations contain multiple geophysical and environmental
signals with amplitudes greater than the predicted core signals (Fig 3).
GRACE and GRACE Follow-On (FO) missions suffer from time-gaps and Mok e
problems in determining specific Stokes coefficients (Fig 2) [4]. secuar | g Postlacial ebound
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[1, 2] proposed different core processes that
would perturb the gravity field. [3] pointed
out a possible correlation between gravity
and magnetic fields variations.

Lecomte et al. 2022 (submitted) [5] details the uncertainties of the GRACE Tefopamul,
solution and the geophysical correction models (post-glacial rebound, hy- b
drological and oceanic loadings).
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Such mechanisms involve mass variations.
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variations of the gravimetric field. tions at the CMB
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these theoretically predicted signals into Fig. 2. GRACE & GRACE-FO
ravity field variations. j \ calendar and problems j
— Theoretical processes N
Three effects were tested with a pluri-annual sinusoidal behavior: T ——— te-1Bormalized spherical harmoric coeficent 1,
s

- Dissolution / Crystallisation at the CMB [2] (Fig 4, Fig 5a)

- Pressure changes at the Core Mantle Boundary (CMB) [1, 6] (Fig 5b)

- Reorientation of the Inner Core (IC) [1] (Fig 6, Fig 5¢c)
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Fig. 5. Geoid and mantle variations caused by core processes (Figure from [1])
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~—— Results by analysis techniques —————— — ————— ————— — ~N
" Wavelef analysis ' EOF analysis | . Correlation analysis |
- - - The Empirical Orthogonal Function (EOF) analysis separates the signal | A correlation between gravity and magnetic fields highlights possible com-

The wavelet analysis of the Stokes coefficients shows the spectral content | into subfunctions. One particular EOF is associated with a map and a time | mon signal from core processes [3]. We used CHAOS 7.9 model [8] to re-
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The effects of pressure changes at the CMB are not large enough to appear (a=15° i o Correlation maps .for other signals than those induced by a reorientation
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The effect of a reorientation of the IC clearly appears in the analysis for the ( Paramete rs for reorientation of IC \
largest parameter assumptions : a. = 1.5°,h,,=36 m (Fig. 10). With the wavelet analysis method, we as-

sess the possible values for the two parame-
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\These results will be detailed in Lecomte et al. 2023 (in preparation). J




