A-posteriori Correction Methods for Antenna Measurement by Wavelets

*ENAC, †DGA-AID, ‡DSO/RF/Antennes, Centre National d'Etudes Spatiales

Alice Quennelle, alice.quennelle-ext@enac.fr *^{†‡}, Alexandre Chabory*, Philippe Pouliguen [†], Romain Contreres[‡], Gwenn Le Fur[‡]

RÉPUBLIQUE

Context

- In the domain of antennas, design and prototyping phases are always followed by a measurement phase, which goal is to reliably assess the reached performances with respect to the expected specifications.
- The accuracy is limited by perturbations : spurious reflections, coupling, noise,...
- · Many post-processing methods already exist to extend the capabilities of

Objectives

Improve antenna measurement post-processing and correction with wavelets

- Introduce spherical wavevelet expansion as tools instead of traditional plane-waves or spherical harmonics
- Improve deconvolution method in term of localization, computational time and compression
- Test of the developped methods on simulations and real measurement data

1D wavelets

Wavelet family

- · Constructed so as to capture the various scales of variations of the signal
- Composed of [1]:
- Mother wavelet
 - Daughter wavelets : dilated versions of the mother wavelet ψ_n
 - Scaling function ϕ
- · Translated versions of these functions
- - Orthonormal basis localized in both space and spectrum.
 - · Very well-known analysis and data compression tool

Properties [2]

- Spherical wavelet theory developped with sampling theorems [3]
- Scaling function Φ and wavelet functions at various scales Ψ_i for $j \in [J_0, J_{max}]$
- Good localisation properties both spatially on the sphere and in harmonic space
- The spin : parameter s=0 (scalar data) $s\pm 1$ (vectorial data), also linked with the polarisation
- \Rightarrow Extraction of spatially localised, scale-dependent features in vectorial signals of interest, in spherical

Figure: Axisymmetric scale discretised spherical scaling and wavelet functions for scales $j \in \{2,3\}$.

Pyramidal horn antenna

⇒ use of the package s2let [2] Properties:

- TE10, TE01 (with a 90° phase shift) modes square guide • 6.5 GHz
- Circularly polarized
- \bullet Aperture of 0.14 m \times 0.14 m
- Simulated with Altair Feko
- Method of moments
- 3rd Ludwig definition for co and cross-polarisations Observations:
- - The higher the order of the wavelet, the smaller the variations
- The co and cross-polarizations decomposition differentiable by mean of the spin parameter
- More interesting for antennas with fastest variations like large antennas

(b) Radiation pattern

Figure: Configuration of the horn, radiation pattern (dB) and multiresolution wavelet coefficients associated with the scaling function and the different spin spherical wavelet levels for $j \in \{1, \dots, 8\}$ the horn antenna (dB)

The antenna

Current work

- Equivalence principle
- Reciprocity theorem
- \Rightarrow b=h \otimes g with b the signal measured on the port of the antenna, h a field corresponding to the radiation of the probe in the environment nearby the antenna ang g the radiation pattern of the antenna.

Deconvolution methods for antenna measurement correction

Test zone field compensation [4]

- Correction of localized defaults
- Usualy implemented with spherical harmonics
- Objective is to implement it with spin spherical wavelets

- [1] Quennelle, A., Chabory, A., Pouliguen, P., Contreres, R., Le Fur, G. (2022, March). Analysis of Antenna Radiation Patterns by Means of Spherical Wavelets. In 2022 16th European Conference on Antennas and Propagation (EuCAP) (pp. 1-5). IEEE.
- [2] Quennelle, A., Chabory, A., Pouliguen, P., Contreres, R., Le Fur, G. (2022, Juin). Analyse de diagrammes de rayonnements d'antennes au moyen d'ondelettes sphériques. 22ièmes Journées Nationales Microondes.

References

- [1] S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989
- [2] B. Leistedt, J. D. McEwen, P. Vandergheynst, and Y. Wiaux, "S2let: A code to perform fast wavelet analysis on the sphere," Astronomy Astrophysics, vol. 558, p. A128, 2013.
- [3] J. D. McEwen and Y. Wiaux, "A novel sampling theorem on the sphere," IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 5876-5887, 2011.
- [4] J. T. Toivanen, T. A. Laitinen and P. Vainikainen, "Modified Test Zone Field Compensation for Small-Antenna Measurements," in IEEE Transactions on Antennas and Propagation, vol. 58, no. 11, pp. 3471-3479, Nov. 2010, doi: 10.1109/TAP.2010.2071335.

The authors thank DGAC-AID and CNES for founding this work.