

Thibault GIOUD, gioud@cerfacs.fr

Supervisors:

- N. Odier (CERFACS)
- B. Cuenot (CERFACS)
- T. Schmitt (EM2C)
- D. Saucereau (ArianeGroup)
- M. Martin-Benito (CNES)

LIQUID INJECTION MODELLING IN LOX/GCH4 ROCKET ENGINES WITH A DIFFUSE INTERFACE METHOD

Liquid rocket engine simulation

Motivation

Need for liquid simulation in the context of rocket engine configurations

Results for a LRE configuration [2]

Implementation of a predictive methodology for sub/trans/super-critical liquid rocket engines

Diffuse interface approach

interface is considered as a continuous transition zone

Multi-fluid method

A unique transport equations system for both single-phase and two-phase flows

3-equations system

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$

$$\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho \vec{u} \otimes \vec{u} + P\underline{\underline{I}} - \underline{\underline{\tau}}) = \vec{F}_{ST}$$

$$\frac{\partial \rho e_t}{\partial t} + \vec{\nabla} \cdot ((e_t + P)\vec{u} - \underline{\underline{\tau}} \cdot \vec{u}) = \vec{u} \cdot \vec{F}_{ST}$$

One-phase

Equation of state resolution

Two-phase

Multi-species equilibrium resolution Equation of state resolution

A same shape and length of a liquid core can give different results depending on how it is modelled

- → Imposition of a lagrangian injection along a given liquid core length
- → Computation of the liquid injection

Simplified multi-species equilibrium [1]

- Equality of chemical composition between phases : $Y_{k,l} = Y_{k,v} = Y_k$
- ho_l^{SAT} and ho_v^{SAT} obtained from a tabulated saturation
- >Simplified approach reduces complexity and CPU cost

Next steps

- · Improve and refine the mesh
- Use a complex chemistry (ARC)

Eulerian to Lagrangian transition model

Results

Coarse

Refined

Objective
Reduce mesh dependency of the droplet distribution and liquid core length

Algorithm description [5]

- Detachment of a liquid structure from the liquid core due to shear stress and surface tension
- Structure surface identification with the liquid volume fraction isocontour $\alpha_{liq}=0.5$ Recovering interfacial properties:
- T, P, Y_k

- Recover the liquid structure nodes
- Determine if the structure has to be atomized (structure geometry)
- Determine $\Delta \rho = \rho_l \rho_g^{SAT}$ with the interfacial properties

Without transition model

- With transition model Liquid core length is reduced with the transition model for the coarse mesh
- Liquid core length is no affected by the transition model for the refined mesh
- ightarrow Transition model seems to make the liquid core length less dependent of the mesh refinement

- Apply $T^{SAT}, P^{SAT}, \Delta \rho$ for all eulerian structure nodes
- Determine the lagrangian droplet number, radius and temperature to ensure mass and energy conservation

Next steps

- Validation of the model against experimental data
- Evaluate the impact of the model on a reactive LRE configuration

Publication: "INJECTION MODELLING IN LOX/GCH4 ROCKET ENGINES WITH A DIFFUSE INTERFACE METHOD", T. GIOUD et al, SpacePropulsion 2022

- [1] M. Pelletier et al, Computers and Fluids, 2020[2] C. B. von Sethe et al, EUCASS, 2019
- L. Potier et al, Entropy, 2022
- S. Blanchard, PhD thesis, 2021 [5] T.Laroche, PhD thesis, 2021 (2D, mono-species)