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Introduction

Dust particles are known to have the ability to nucleate ice crystals (Cziczo et al., 2013). In
mixed-phase clouds (-38°C < T < 0°C), the existence and abundance of such ice-nucleating
particles (INPs) are critical for determining the bulk properties; in general, glaciated clouds
are optically thinner than clouds that consist of many small liquid droplets. It may also have
some impacts on the timing and the amount of surface rainfall if clouds are precipitating.
Even though several laboratory experiments and field campaigns have taken place to
understand this dust-cloud relationship, it has been challenging to parameterize and
incorporate the effects in numerical models (Kaniji et al, 2017).
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The target variables are (1) cloud coverage [%], (2) cloud
optical depth, (3) cloud phase (liquid/ice), and (4) cloud top height [km].
One machine is trained for each target variable with the same input features.

Data Preparation

Variables from different datasets need to be pre-processed so that (1)
the resolution of the data gets unified to 1° x 1° (e.g., upper figures
below) and (2) the area of missing data gets minimized (e.g., lower
figures below).

Preliminary Results / Ongoing Work
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*Although there is a 3h time difference,
the area of missing data got minimized
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from MERRA2 on June 1, 2000.

Minimizing the number of input features is a crucial step in
machine-learning, as a resultant trained machine would require
fewer variables for predictions (e.g., computationally less expensive,
easier to be implemented in a model, etc.). In the example above, we
can see strong relation between SLP and Zgsomp, for instance, and
therefore one of them can be eliminated from input features. This
analysis is being conducted on the 20-year data for June and July.
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